CodeGeeX4/llamaindex_demo/models/codegeex.py

109 lines
4.1 KiB
Python
Raw Permalink Normal View History

2024-07-05 01:33:53 +00:00
from llama_index.core.base.llms.types import (
ChatMessage,
ChatResponse,
ChatResponseGen,
CompletionResponse,
CompletionResponseGen,
LLMMetadata,
)
from llama_index.core.llms import LLM
from pydantic import Field
from transformers import AutoTokenizer, AutoModel
from utils.prompts import SYS_PROMPT
class CodegeexChatModel(LLM):
device: str = Field(description="device to load the model")
tokenizer = Field(description="model's tokenizer")
model = Field(description="Codegeex model")
temperature: float = Field(description="temperature to use for the model.")
def __init__(self, args):
super().__init__()
self.device = args.device
self.tokenizer = AutoTokenizer.from_pretrained(args.model_name_or_path, trust_remote_code=True)
self.model = AutoModel.from_pretrained(args.model_name_or_path, trust_remote_code=True).to(args.device).eval()
self.temperature = args.temperature
print("Model has been initialized.")
@classmethod
def class_name(cls) -> str:
return "codegeex"
@property
def metadata(self) -> LLMMetadata:
return LLMMetadata(
context_window=7168,
num_output=1024,
is_chat_model=True,
model_name="codegeex",
)
def chat(self, messages: list[ChatMessage], **kwargs) -> ChatResponse:
try:
response, _ = self.model.chat(
self.tokenizer,
query=messages[0].content,
history=[{"role": "system", "content": SYS_PROMPT}],
max_new_tokens=1024,
temperature=self.temperature
)
return ChatResponse(message=ChatMessage(role="assistant", content=response))
except Exception as e:
return ChatResponse(message=ChatMessage(role="assistant", content=e))
def stream_chat(self, messages: list[ChatMessage], **kwargs) -> ChatResponseGen:
try:
for response, _ in self.model.stream_chat(
self.tokenizer,
query=messages[0].content,
history=[{"role": "system", "content": SYS_PROMPT}],
max_new_tokens=1024,
temperature=self.temperature
):
yield ChatResponse(message=ChatMessage(role="assistant", content=response))
except Exception as e:
yield ChatResponse(message=ChatMessage(role="assistant", content=e))
def complete(self, prompt: str, formatted: bool = False, **kwargs) -> CompletionResponse:
try:
response, _ = self.model.chat(
self.tokenizer,
query=prompt,
history=[{"role": "system", "content": "你是一个智能编程助手"}],
max_new_tokens=1024,
temperature=self.temperature
)
return CompletionResponse(text=response)
except Exception as e:
return CompletionResponse(text=e)
def stream_complete(self, prompt: str, formatted: bool = False, **kwargs) -> CompletionResponseGen:
try:
for response, _ in self.model.stream_chat(
self.tokenizer,
query=prompt,
history=[{"role": "system", "content": "你是一个智能编程助手"}],
max_new_tokens=1024,
temperature=self.temperature
):
yield CompletionResponse(text=response)
except Exception as e:
yield CompletionResponse(text=e)
async def achat(self, messages: list[ChatMessage], **kwargs):
return await self.chat(messages, **kwargs)
async def astream_chat(self, messages: list[ChatMessage], **kwargs):
async for resp in self.stream_chat(messages, **kwargs):
yield resp
async def acomplete(self, prompt: str, formatted: bool = False, **kwargs):
return await self.complete(prompt, formatted, **kwargs)
async def astream_complete(self, prompt: str, formatted: bool = False, **kwargs):
async for resp in self.stream_complete(prompt, formatted, **kwargs):
yield resp