CodeGeeX4/llamaindex_demo/utils/vector.py

37 lines
1.4 KiB
Python
Raw Normal View History

2024-07-05 01:33:53 +00:00
import os
import faiss
from llama_index.core import StorageContext, VectorStoreIndex, load_index_from_storage
from llama_index.legacy.vector_stores import FaissVectorStore
from models.embedding import GLMEmbeddings
from tqdm import tqdm
from utils.data import split_into_chunks
embed_model = GLMEmbeddings()
def save_vectors(files: list[str], args):
# split file into chunks
nodes = []
for file in tqdm(files, desc="文件切分"):
nodes.extend(split_into_chunks(file, args.lines_per_chunk, args.lines_overlap, args.max_chars))
# initialize vector store
vector_store = FaissVectorStore(faiss_index=faiss.IndexFlatL2(embed_model.embedding_size))
storage_context = StorageContext.from_defaults(vector_store=vector_store)
# translate to vectors
index = VectorStoreIndex(nodes=nodes, storage_context=storage_context, embed_model=embed_model)
# save embedded vectors
output_path = args.output_path
os.makedirs(output_path, exist_ok=True)
index.storage_context.persist(persist_dir=output_path)
print(f"文件向量化完成,已保存至{output_path}")
def load_vectors(vector_path: str):
vector_store = FaissVectorStore.from_persist_dir(vector_path)
storage_context = StorageContext.from_defaults(vector_store=vector_store, persist_dir=vector_path)
return load_index_from_storage(storage_context=storage_context)