![](../resources/logo.jpeg) [English](README.md) | [中文](README_zh.md) ## RAG Functionality CodeGeeX4 supports RAG retrieval enhancement and is compatible with the LlamaIndex framework to achieving project-level retrieval Q&A. ## Usage Tutorial ### 1. Install Dependencies ```bash cd llamaindex_demo pip install -r requirements.txt ``` Note: This project uses tree-sitter-language, which has compatibility issues with Python 3.10, so please use Python 3.8 or Python 3.9 to run this project. ### 2. Configure Embedding API Key This project uses the Zhipu Open Platform's Embedding API to implement vectorization. Please register and obtain an API Key first. Then configure the API Key in `models/embedding.py`. For details, refer to https://open.bigmodel.cn/dev/api#text_embedding ### 3. Generate Vector Data ```bash python vectorize.py --workspace . --output_path vectors >>> File vectorization completed, saved to vectors ``` ### 4. Run the Q&A Script ```bash python chat.py --vector_path vectors >>> Running on local URL: http://127.0.0.1:8080 ``` ## Demo ![](resources/demo.png)