![](../resources/logo.jpeg) [English](README.md) | [中文](README_zh.md) ## RAG Functionality CodeGeeX4 supports RAG functionality and is compatible with the Langchain framework to achieve project-level retrieval Q&A. ## Tutorial ### 1. Install Dependencies Navigate to the `langchain_demo` directory and install the required packages. ```bash cd langchain_demo pip install -r requirements.txt ``` ### 2. Configure Embedding API Key This project uses the Embedding API from the Zhipu Open Platform for vectorization. Please register and obtain an API Key first. Then, configure the API Key in `models/embedding.py`. For more details, refer to https://open.bigmodel.cn/dev/api#text_embedding. ### 3. Generate Vector Data ```bash python vectorize.py --workspace . --output_path vectors >>> File vectorization completed, saved to vectors ``` ### 4. Run the Q&A Script ```bash python chat.py --vector_path vectors >>> Running on local URL: http://127.0.0.1:8080 ``` ## Demo ![](resources/demo.png)