mirror of
https://github.com/JasonYANG170/CodeGeeX4.git
synced 2024-11-23 04:06:32 +00:00
.. | ||
models | ||
resources | ||
utils | ||
chat.py | ||
README_zh.md | ||
README.md | ||
requirements.txt | ||
vectorize.py |
RAG Functionality
CodeGeeX4 supports RAG functionality and is compatible with the Langchain framework to achieve project-level retrieval Q&A.
Tutorial
1. Install Dependencies
Navigate to the langchain_demo
directory and install the required packages.
cd langchain_demo
pip install -r requirements.txt
2. Configure Embedding API Key
This project uses the Embedding API from the Zhipu Open Platform for vectorization. Please register and obtain an API Key first.
Then, configure the API Key in models/embedding.py
.
For more details, refer to https://open.bigmodel.cn/dev/api#text_embedding.
3. Generate Vector Data
python vectorize.py --workspace . --output_path vectors
>>> File vectorization completed, saved to vectors
4. Run the Q&A Script
python chat.py --vector_path vectors
>>> Running on local URL: http://127.0.0.1:8080