mirror of
https://github.com/JasonYANG170/CodeGeeX4.git
synced 2024-11-23 20:26:29 +00:00
43 lines
1.4 KiB
Python
43 lines
1.4 KiB
Python
import os
|
|
|
|
from langchain_community.docstore import InMemoryDocstore
|
|
from langchain_community.vectorstores.faiss import FAISS, dependable_faiss_import
|
|
from models.embedding import GLMEmbeddings
|
|
from tqdm import tqdm
|
|
from utils.data import split_into_chunks
|
|
|
|
embed_model = GLMEmbeddings()
|
|
|
|
|
|
def vectorize(files: list[str], args):
|
|
# split file into chunks
|
|
chunks = []
|
|
for file in tqdm(files, desc="文件切分"):
|
|
chunks.extend(split_into_chunks(file, args.chunk_size, args.overlap_size))
|
|
|
|
# initialize the vector store
|
|
vector_store = FAISS(
|
|
embedding_function=embed_model,
|
|
index=dependable_faiss_import().IndexFlatL2(embed_model.embedding_size),
|
|
docstore=InMemoryDocstore(),
|
|
index_to_docstore_id={},
|
|
)
|
|
|
|
# translate to vectors
|
|
batch_size = args.batch_size
|
|
for i in tqdm(range(0, len(chunks), batch_size), desc="向量化"):
|
|
try:
|
|
vector_store.add_documents(chunks[i:i + batch_size])
|
|
except Exception as e:
|
|
print(f"文件向量化失败,{e}")
|
|
|
|
# save embedded vectors
|
|
output_path = args.output_path
|
|
os.makedirs(output_path, exist_ok=True)
|
|
vector_store.save_local(output_path)
|
|
print(f"文件向量化完成,已保存至{output_path}")
|
|
|
|
|
|
def load_vector_store(vector_path: str):
|
|
return FAISS.load_local(vector_path, embed_model, allow_dangerous_deserialization=True)
|