/* replacement start */ const process = require('process/') /* replacement end */ // Copyright Joyent, Inc. and other Node contributors. // // Permission is hereby granted, free of charge, to any person obtaining a // copy of this software and associated documentation files (the // "Software"), to deal in the Software without restriction, including // without limitation the rights to use, copy, modify, merge, publish, // distribute, sublicense, and/or sell copies of the Software, and to permit // persons to whom the Software is furnished to do so, subject to the // following conditions: // // The above copyright notice and this permission notice shall be included // in all copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS // OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF // MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN // NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, // DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR // OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE // USE OR OTHER DEALINGS IN THE SOFTWARE. ;('use strict') const { ArrayPrototypeIndexOf, NumberIsInteger, NumberIsNaN, NumberParseInt, ObjectDefineProperties, ObjectKeys, ObjectSetPrototypeOf, Promise, SafeSet, SymbolAsyncDispose, SymbolAsyncIterator, Symbol } = require('../../ours/primordials') module.exports = Readable Readable.ReadableState = ReadableState const { EventEmitter: EE } = require('events') const { Stream, prependListener } = require('./legacy') const { Buffer } = require('buffer') const { addAbortSignal } = require('./add-abort-signal') const eos = require('./end-of-stream') let debug = require('../../ours/util').debuglog('stream', (fn) => { debug = fn }) const BufferList = require('./buffer_list') const destroyImpl = require('./destroy') const { getHighWaterMark, getDefaultHighWaterMark } = require('./state') const { aggregateTwoErrors, codes: { ERR_INVALID_ARG_TYPE, ERR_METHOD_NOT_IMPLEMENTED, ERR_OUT_OF_RANGE, ERR_STREAM_PUSH_AFTER_EOF, ERR_STREAM_UNSHIFT_AFTER_END_EVENT }, AbortError } = require('../../ours/errors') const { validateObject } = require('../validators') const kPaused = Symbol('kPaused') const { StringDecoder } = require('string_decoder') const from = require('./from') ObjectSetPrototypeOf(Readable.prototype, Stream.prototype) ObjectSetPrototypeOf(Readable, Stream) const nop = () => {} const { errorOrDestroy } = destroyImpl const kObjectMode = 1 << 0 const kEnded = 1 << 1 const kEndEmitted = 1 << 2 const kReading = 1 << 3 const kConstructed = 1 << 4 const kSync = 1 << 5 const kNeedReadable = 1 << 6 const kEmittedReadable = 1 << 7 const kReadableListening = 1 << 8 const kResumeScheduled = 1 << 9 const kErrorEmitted = 1 << 10 const kEmitClose = 1 << 11 const kAutoDestroy = 1 << 12 const kDestroyed = 1 << 13 const kClosed = 1 << 14 const kCloseEmitted = 1 << 15 const kMultiAwaitDrain = 1 << 16 const kReadingMore = 1 << 17 const kDataEmitted = 1 << 18 // TODO(benjamingr) it is likely slower to do it this way than with free functions function makeBitMapDescriptor(bit) { return { enumerable: false, get() { return (this.state & bit) !== 0 }, set(value) { if (value) this.state |= bit else this.state &= ~bit } } } ObjectDefineProperties(ReadableState.prototype, { objectMode: makeBitMapDescriptor(kObjectMode), ended: makeBitMapDescriptor(kEnded), endEmitted: makeBitMapDescriptor(kEndEmitted), reading: makeBitMapDescriptor(kReading), // Stream is still being constructed and cannot be // destroyed until construction finished or failed. // Async construction is opt in, therefore we start as // constructed. constructed: makeBitMapDescriptor(kConstructed), // A flag to be able to tell if the event 'readable'/'data' is emitted // immediately, or on a later tick. We set this to true at first, because // any actions that shouldn't happen until "later" should generally also // not happen before the first read call. sync: makeBitMapDescriptor(kSync), // Whenever we return null, then we set a flag to say // that we're awaiting a 'readable' event emission. needReadable: makeBitMapDescriptor(kNeedReadable), emittedReadable: makeBitMapDescriptor(kEmittedReadable), readableListening: makeBitMapDescriptor(kReadableListening), resumeScheduled: makeBitMapDescriptor(kResumeScheduled), // True if the error was already emitted and should not be thrown again. errorEmitted: makeBitMapDescriptor(kErrorEmitted), emitClose: makeBitMapDescriptor(kEmitClose), autoDestroy: makeBitMapDescriptor(kAutoDestroy), // Has it been destroyed. destroyed: makeBitMapDescriptor(kDestroyed), // Indicates whether the stream has finished destroying. closed: makeBitMapDescriptor(kClosed), // True if close has been emitted or would have been emitted // depending on emitClose. closeEmitted: makeBitMapDescriptor(kCloseEmitted), multiAwaitDrain: makeBitMapDescriptor(kMultiAwaitDrain), // If true, a maybeReadMore has been scheduled. readingMore: makeBitMapDescriptor(kReadingMore), dataEmitted: makeBitMapDescriptor(kDataEmitted) }) function ReadableState(options, stream, isDuplex) { // Duplex streams are both readable and writable, but share // the same options object. // However, some cases require setting options to different // values for the readable and the writable sides of the duplex stream. // These options can be provided separately as readableXXX and writableXXX. if (typeof isDuplex !== 'boolean') isDuplex = stream instanceof require('./duplex') // Bit map field to store ReadableState more effciently with 1 bit per field // instead of a V8 slot per field. this.state = kEmitClose | kAutoDestroy | kConstructed | kSync // Object stream flag. Used to make read(n) ignore n and to // make all the buffer merging and length checks go away. if (options && options.objectMode) this.state |= kObjectMode if (isDuplex && options && options.readableObjectMode) this.state |= kObjectMode // The point at which it stops calling _read() to fill the buffer // Note: 0 is a valid value, means "don't call _read preemptively ever" this.highWaterMark = options ? getHighWaterMark(this, options, 'readableHighWaterMark', isDuplex) : getDefaultHighWaterMark(false) // A linked list is used to store data chunks instead of an array because the // linked list can remove elements from the beginning faster than // array.shift(). this.buffer = new BufferList() this.length = 0 this.pipes = [] this.flowing = null this[kPaused] = null // Should close be emitted on destroy. Defaults to true. if (options && options.emitClose === false) this.state &= ~kEmitClose // Should .destroy() be called after 'end' (and potentially 'finish'). if (options && options.autoDestroy === false) this.state &= ~kAutoDestroy // Indicates whether the stream has errored. When true no further // _read calls, 'data' or 'readable' events should occur. This is needed // since when autoDestroy is disabled we need a way to tell whether the // stream has failed. this.errored = null // Crypto is kind of old and crusty. Historically, its default string // encoding is 'binary' so we have to make this configurable. // Everything else in the universe uses 'utf8', though. this.defaultEncoding = (options && options.defaultEncoding) || 'utf8' // Ref the piped dest which we need a drain event on it // type: null | Writable | Set. this.awaitDrainWriters = null this.decoder = null this.encoding = null if (options && options.encoding) { this.decoder = new StringDecoder(options.encoding) this.encoding = options.encoding } } function Readable(options) { if (!(this instanceof Readable)) return new Readable(options) // Checking for a Stream.Duplex instance is faster here instead of inside // the ReadableState constructor, at least with V8 6.5. const isDuplex = this instanceof require('./duplex') this._readableState = new ReadableState(options, this, isDuplex) if (options) { if (typeof options.read === 'function') this._read = options.read if (typeof options.destroy === 'function') this._destroy = options.destroy if (typeof options.construct === 'function') this._construct = options.construct if (options.signal && !isDuplex) addAbortSignal(options.signal, this) } Stream.call(this, options) destroyImpl.construct(this, () => { if (this._readableState.needReadable) { maybeReadMore(this, this._readableState) } }) } Readable.prototype.destroy = destroyImpl.destroy Readable.prototype._undestroy = destroyImpl.undestroy Readable.prototype._destroy = function (err, cb) { cb(err) } Readable.prototype[EE.captureRejectionSymbol] = function (err) { this.destroy(err) } Readable.prototype[SymbolAsyncDispose] = function () { let error if (!this.destroyed) { error = this.readableEnded ? null : new AbortError() this.destroy(error) } return new Promise((resolve, reject) => eos(this, (err) => (err && err !== error ? reject(err) : resolve(null)))) } // Manually shove something into the read() buffer. // This returns true if the highWaterMark has not been hit yet, // similar to how Writable.write() returns true if you should // write() some more. Readable.prototype.push = function (chunk, encoding) { return readableAddChunk(this, chunk, encoding, false) } // Unshift should *always* be something directly out of read(). Readable.prototype.unshift = function (chunk, encoding) { return readableAddChunk(this, chunk, encoding, true) } function readableAddChunk(stream, chunk, encoding, addToFront) { debug('readableAddChunk', chunk) const state = stream._readableState let err if ((state.state & kObjectMode) === 0) { if (typeof chunk === 'string') { encoding = encoding || state.defaultEncoding if (state.encoding !== encoding) { if (addToFront && state.encoding) { // When unshifting, if state.encoding is set, we have to save // the string in the BufferList with the state encoding. chunk = Buffer.from(chunk, encoding).toString(state.encoding) } else { chunk = Buffer.from(chunk, encoding) encoding = '' } } } else if (chunk instanceof Buffer) { encoding = '' } else if (Stream._isUint8Array(chunk)) { chunk = Stream._uint8ArrayToBuffer(chunk) encoding = '' } else if (chunk != null) { err = new ERR_INVALID_ARG_TYPE('chunk', ['string', 'Buffer', 'Uint8Array'], chunk) } } if (err) { errorOrDestroy(stream, err) } else if (chunk === null) { state.state &= ~kReading onEofChunk(stream, state) } else if ((state.state & kObjectMode) !== 0 || (chunk && chunk.length > 0)) { if (addToFront) { if ((state.state & kEndEmitted) !== 0) errorOrDestroy(stream, new ERR_STREAM_UNSHIFT_AFTER_END_EVENT()) else if (state.destroyed || state.errored) return false else addChunk(stream, state, chunk, true) } else if (state.ended) { errorOrDestroy(stream, new ERR_STREAM_PUSH_AFTER_EOF()) } else if (state.destroyed || state.errored) { return false } else { state.state &= ~kReading if (state.decoder && !encoding) { chunk = state.decoder.write(chunk) if (state.objectMode || chunk.length !== 0) addChunk(stream, state, chunk, false) else maybeReadMore(stream, state) } else { addChunk(stream, state, chunk, false) } } } else if (!addToFront) { state.state &= ~kReading maybeReadMore(stream, state) } // We can push more data if we are below the highWaterMark. // Also, if we have no data yet, we can stand some more bytes. // This is to work around cases where hwm=0, such as the repl. return !state.ended && (state.length < state.highWaterMark || state.length === 0) } function addChunk(stream, state, chunk, addToFront) { if (state.flowing && state.length === 0 && !state.sync && stream.listenerCount('data') > 0) { // Use the guard to avoid creating `Set()` repeatedly // when we have multiple pipes. if ((state.state & kMultiAwaitDrain) !== 0) { state.awaitDrainWriters.clear() } else { state.awaitDrainWriters = null } state.dataEmitted = true stream.emit('data', chunk) } else { // Update the buffer info. state.length += state.objectMode ? 1 : chunk.length if (addToFront) state.buffer.unshift(chunk) else state.buffer.push(chunk) if ((state.state & kNeedReadable) !== 0) emitReadable(stream) } maybeReadMore(stream, state) } Readable.prototype.isPaused = function () { const state = this._readableState return state[kPaused] === true || state.flowing === false } // Backwards compatibility. Readable.prototype.setEncoding = function (enc) { const decoder = new StringDecoder(enc) this._readableState.decoder = decoder // If setEncoding(null), decoder.encoding equals utf8. this._readableState.encoding = this._readableState.decoder.encoding const buffer = this._readableState.buffer // Iterate over current buffer to convert already stored Buffers: let content = '' for (const data of buffer) { content += decoder.write(data) } buffer.clear() if (content !== '') buffer.push(content) this._readableState.length = content.length return this } // Don't raise the hwm > 1GB. const MAX_HWM = 0x40000000 function computeNewHighWaterMark(n) { if (n > MAX_HWM) { throw new ERR_OUT_OF_RANGE('size', '<= 1GiB', n) } else { // Get the next highest power of 2 to prevent increasing hwm excessively in // tiny amounts. n-- n |= n >>> 1 n |= n >>> 2 n |= n >>> 4 n |= n >>> 8 n |= n >>> 16 n++ } return n } // This function is designed to be inlinable, so please take care when making // changes to the function body. function howMuchToRead(n, state) { if (n <= 0 || (state.length === 0 && state.ended)) return 0 if ((state.state & kObjectMode) !== 0) return 1 if (NumberIsNaN(n)) { // Only flow one buffer at a time. if (state.flowing && state.length) return state.buffer.first().length return state.length } if (n <= state.length) return n return state.ended ? state.length : 0 } // You can override either this method, or the async _read(n) below. Readable.prototype.read = function (n) { debug('read', n) // Same as parseInt(undefined, 10), however V8 7.3 performance regressed // in this scenario, so we are doing it manually. if (n === undefined) { n = NaN } else if (!NumberIsInteger(n)) { n = NumberParseInt(n, 10) } const state = this._readableState const nOrig = n // If we're asking for more than the current hwm, then raise the hwm. if (n > state.highWaterMark) state.highWaterMark = computeNewHighWaterMark(n) if (n !== 0) state.state &= ~kEmittedReadable // If we're doing read(0) to trigger a readable event, but we // already have a bunch of data in the buffer, then just trigger // the 'readable' event and move on. if ( n === 0 && state.needReadable && ((state.highWaterMark !== 0 ? state.length >= state.highWaterMark : state.length > 0) || state.ended) ) { debug('read: emitReadable', state.length, state.ended) if (state.length === 0 && state.ended) endReadable(this) else emitReadable(this) return null } n = howMuchToRead(n, state) // If we've ended, and we're now clear, then finish it up. if (n === 0 && state.ended) { if (state.length === 0) endReadable(this) return null } // All the actual chunk generation logic needs to be // *below* the call to _read. The reason is that in certain // synthetic stream cases, such as passthrough streams, _read // may be a completely synchronous operation which may change // the state of the read buffer, providing enough data when // before there was *not* enough. // // So, the steps are: // 1. Figure out what the state of things will be after we do // a read from the buffer. // // 2. If that resulting state will trigger a _read, then call _read. // Note that this may be asynchronous, or synchronous. Yes, it is // deeply ugly to write APIs this way, but that still doesn't mean // that the Readable class should behave improperly, as streams are // designed to be sync/async agnostic. // Take note if the _read call is sync or async (ie, if the read call // has returned yet), so that we know whether or not it's safe to emit // 'readable' etc. // // 3. Actually pull the requested chunks out of the buffer and return. // if we need a readable event, then we need to do some reading. let doRead = (state.state & kNeedReadable) !== 0 debug('need readable', doRead) // If we currently have less than the highWaterMark, then also read some. if (state.length === 0 || state.length - n < state.highWaterMark) { doRead = true debug('length less than watermark', doRead) } // However, if we've ended, then there's no point, if we're already // reading, then it's unnecessary, if we're constructing we have to wait, // and if we're destroyed or errored, then it's not allowed, if (state.ended || state.reading || state.destroyed || state.errored || !state.constructed) { doRead = false debug('reading, ended or constructing', doRead) } else if (doRead) { debug('do read') state.state |= kReading | kSync // If the length is currently zero, then we *need* a readable event. if (state.length === 0) state.state |= kNeedReadable // Call internal read method try { this._read(state.highWaterMark) } catch (err) { errorOrDestroy(this, err) } state.state &= ~kSync // If _read pushed data synchronously, then `reading` will be false, // and we need to re-evaluate how much data we can return to the user. if (!state.reading) n = howMuchToRead(nOrig, state) } let ret if (n > 0) ret = fromList(n, state) else ret = null if (ret === null) { state.needReadable = state.length <= state.highWaterMark n = 0 } else { state.length -= n if (state.multiAwaitDrain) { state.awaitDrainWriters.clear() } else { state.awaitDrainWriters = null } } if (state.length === 0) { // If we have nothing in the buffer, then we want to know // as soon as we *do* get something into the buffer. if (!state.ended) state.needReadable = true // If we tried to read() past the EOF, then emit end on the next tick. if (nOrig !== n && state.ended) endReadable(this) } if (ret !== null && !state.errorEmitted && !state.closeEmitted) { state.dataEmitted = true this.emit('data', ret) } return ret } function onEofChunk(stream, state) { debug('onEofChunk') if (state.ended) return if (state.decoder) { const chunk = state.decoder.end() if (chunk && chunk.length) { state.buffer.push(chunk) state.length += state.objectMode ? 1 : chunk.length } } state.ended = true if (state.sync) { // If we are sync, wait until next tick to emit the data. // Otherwise we risk emitting data in the flow() // the readable code triggers during a read() call. emitReadable(stream) } else { // Emit 'readable' now to make sure it gets picked up. state.needReadable = false state.emittedReadable = true // We have to emit readable now that we are EOF. Modules // in the ecosystem (e.g. dicer) rely on this event being sync. emitReadable_(stream) } } // Don't emit readable right away in sync mode, because this can trigger // another read() call => stack overflow. This way, it might trigger // a nextTick recursion warning, but that's not so bad. function emitReadable(stream) { const state = stream._readableState debug('emitReadable', state.needReadable, state.emittedReadable) state.needReadable = false if (!state.emittedReadable) { debug('emitReadable', state.flowing) state.emittedReadable = true process.nextTick(emitReadable_, stream) } } function emitReadable_(stream) { const state = stream._readableState debug('emitReadable_', state.destroyed, state.length, state.ended) if (!state.destroyed && !state.errored && (state.length || state.ended)) { stream.emit('readable') state.emittedReadable = false } // The stream needs another readable event if: // 1. It is not flowing, as the flow mechanism will take // care of it. // 2. It is not ended. // 3. It is below the highWaterMark, so we can schedule // another readable later. state.needReadable = !state.flowing && !state.ended && state.length <= state.highWaterMark flow(stream) } // At this point, the user has presumably seen the 'readable' event, // and called read() to consume some data. that may have triggered // in turn another _read(n) call, in which case reading = true if // it's in progress. // However, if we're not ended, or reading, and the length < hwm, // then go ahead and try to read some more preemptively. function maybeReadMore(stream, state) { if (!state.readingMore && state.constructed) { state.readingMore = true process.nextTick(maybeReadMore_, stream, state) } } function maybeReadMore_(stream, state) { // Attempt to read more data if we should. // // The conditions for reading more data are (one of): // - Not enough data buffered (state.length < state.highWaterMark). The loop // is responsible for filling the buffer with enough data if such data // is available. If highWaterMark is 0 and we are not in the flowing mode // we should _not_ attempt to buffer any extra data. We'll get more data // when the stream consumer calls read() instead. // - No data in the buffer, and the stream is in flowing mode. In this mode // the loop below is responsible for ensuring read() is called. Failing to // call read here would abort the flow and there's no other mechanism for // continuing the flow if the stream consumer has just subscribed to the // 'data' event. // // In addition to the above conditions to keep reading data, the following // conditions prevent the data from being read: // - The stream has ended (state.ended). // - There is already a pending 'read' operation (state.reading). This is a // case where the stream has called the implementation defined _read() // method, but they are processing the call asynchronously and have _not_ // called push() with new data. In this case we skip performing more // read()s. The execution ends in this method again after the _read() ends // up calling push() with more data. while ( !state.reading && !state.ended && (state.length < state.highWaterMark || (state.flowing && state.length === 0)) ) { const len = state.length debug('maybeReadMore read 0') stream.read(0) if (len === state.length) // Didn't get any data, stop spinning. break } state.readingMore = false } // Abstract method. to be overridden in specific implementation classes. // call cb(er, data) where data is <= n in length. // for virtual (non-string, non-buffer) streams, "length" is somewhat // arbitrary, and perhaps not very meaningful. Readable.prototype._read = function (n) { throw new ERR_METHOD_NOT_IMPLEMENTED('_read()') } Readable.prototype.pipe = function (dest, pipeOpts) { const src = this const state = this._readableState if (state.pipes.length === 1) { if (!state.multiAwaitDrain) { state.multiAwaitDrain = true state.awaitDrainWriters = new SafeSet(state.awaitDrainWriters ? [state.awaitDrainWriters] : []) } } state.pipes.push(dest) debug('pipe count=%d opts=%j', state.pipes.length, pipeOpts) const doEnd = (!pipeOpts || pipeOpts.end !== false) && dest !== process.stdout && dest !== process.stderr const endFn = doEnd ? onend : unpipe if (state.endEmitted) process.nextTick(endFn) else src.once('end', endFn) dest.on('unpipe', onunpipe) function onunpipe(readable, unpipeInfo) { debug('onunpipe') if (readable === src) { if (unpipeInfo && unpipeInfo.hasUnpiped === false) { unpipeInfo.hasUnpiped = true cleanup() } } } function onend() { debug('onend') dest.end() } let ondrain let cleanedUp = false function cleanup() { debug('cleanup') // Cleanup event handlers once the pipe is broken. dest.removeListener('close', onclose) dest.removeListener('finish', onfinish) if (ondrain) { dest.removeListener('drain', ondrain) } dest.removeListener('error', onerror) dest.removeListener('unpipe', onunpipe) src.removeListener('end', onend) src.removeListener('end', unpipe) src.removeListener('data', ondata) cleanedUp = true // If the reader is waiting for a drain event from this // specific writer, then it would cause it to never start // flowing again. // So, if this is awaiting a drain, then we just call it now. // If we don't know, then assume that we are waiting for one. if (ondrain && state.awaitDrainWriters && (!dest._writableState || dest._writableState.needDrain)) ondrain() } function pause() { // If the user unpiped during `dest.write()`, it is possible // to get stuck in a permanently paused state if that write // also returned false. // => Check whether `dest` is still a piping destination. if (!cleanedUp) { if (state.pipes.length === 1 && state.pipes[0] === dest) { debug('false write response, pause', 0) state.awaitDrainWriters = dest state.multiAwaitDrain = false } else if (state.pipes.length > 1 && state.pipes.includes(dest)) { debug('false write response, pause', state.awaitDrainWriters.size) state.awaitDrainWriters.add(dest) } src.pause() } if (!ondrain) { // When the dest drains, it reduces the awaitDrain counter // on the source. This would be more elegant with a .once() // handler in flow(), but adding and removing repeatedly is // too slow. ondrain = pipeOnDrain(src, dest) dest.on('drain', ondrain) } } src.on('data', ondata) function ondata(chunk) { debug('ondata') const ret = dest.write(chunk) debug('dest.write', ret) if (ret === false) { pause() } } // If the dest has an error, then stop piping into it. // However, don't suppress the throwing behavior for this. function onerror(er) { debug('onerror', er) unpipe() dest.removeListener('error', onerror) if (dest.listenerCount('error') === 0) { const s = dest._writableState || dest._readableState if (s && !s.errorEmitted) { // User incorrectly emitted 'error' directly on the stream. errorOrDestroy(dest, er) } else { dest.emit('error', er) } } } // Make sure our error handler is attached before userland ones. prependListener(dest, 'error', onerror) // Both close and finish should trigger unpipe, but only once. function onclose() { dest.removeListener('finish', onfinish) unpipe() } dest.once('close', onclose) function onfinish() { debug('onfinish') dest.removeListener('close', onclose) unpipe() } dest.once('finish', onfinish) function unpipe() { debug('unpipe') src.unpipe(dest) } // Tell the dest that it's being piped to. dest.emit('pipe', src) // Start the flow if it hasn't been started already. if (dest.writableNeedDrain === true) { pause() } else if (!state.flowing) { debug('pipe resume') src.resume() } return dest } function pipeOnDrain(src, dest) { return function pipeOnDrainFunctionResult() { const state = src._readableState // `ondrain` will call directly, // `this` maybe not a reference to dest, // so we use the real dest here. if (state.awaitDrainWriters === dest) { debug('pipeOnDrain', 1) state.awaitDrainWriters = null } else if (state.multiAwaitDrain) { debug('pipeOnDrain', state.awaitDrainWriters.size) state.awaitDrainWriters.delete(dest) } if ((!state.awaitDrainWriters || state.awaitDrainWriters.size === 0) && src.listenerCount('data')) { src.resume() } } } Readable.prototype.unpipe = function (dest) { const state = this._readableState const unpipeInfo = { hasUnpiped: false } // If we're not piping anywhere, then do nothing. if (state.pipes.length === 0) return this if (!dest) { // remove all. const dests = state.pipes state.pipes = [] this.pause() for (let i = 0; i < dests.length; i++) dests[i].emit('unpipe', this, { hasUnpiped: false }) return this } // Try to find the right one. const index = ArrayPrototypeIndexOf(state.pipes, dest) if (index === -1) return this state.pipes.splice(index, 1) if (state.pipes.length === 0) this.pause() dest.emit('unpipe', this, unpipeInfo) return this } // Set up data events if they are asked for // Ensure readable listeners eventually get something. Readable.prototype.on = function (ev, fn) { const res = Stream.prototype.on.call(this, ev, fn) const state = this._readableState if (ev === 'data') { // Update readableListening so that resume() may be a no-op // a few lines down. This is needed to support once('readable'). state.readableListening = this.listenerCount('readable') > 0 // Try start flowing on next tick if stream isn't explicitly paused. if (state.flowing !== false) this.resume() } else if (ev === 'readable') { if (!state.endEmitted && !state.readableListening) { state.readableListening = state.needReadable = true state.flowing = false state.emittedReadable = false debug('on readable', state.length, state.reading) if (state.length) { emitReadable(this) } else if (!state.reading) { process.nextTick(nReadingNextTick, this) } } } return res } Readable.prototype.addListener = Readable.prototype.on Readable.prototype.removeListener = function (ev, fn) { const res = Stream.prototype.removeListener.call(this, ev, fn) if (ev === 'readable') { // We need to check if there is someone still listening to // readable and reset the state. However this needs to happen // after readable has been emitted but before I/O (nextTick) to // support once('readable', fn) cycles. This means that calling // resume within the same tick will have no // effect. process.nextTick(updateReadableListening, this) } return res } Readable.prototype.off = Readable.prototype.removeListener Readable.prototype.removeAllListeners = function (ev) { const res = Stream.prototype.removeAllListeners.apply(this, arguments) if (ev === 'readable' || ev === undefined) { // We need to check if there is someone still listening to // readable and reset the state. However this needs to happen // after readable has been emitted but before I/O (nextTick) to // support once('readable', fn) cycles. This means that calling // resume within the same tick will have no // effect. process.nextTick(updateReadableListening, this) } return res } function updateReadableListening(self) { const state = self._readableState state.readableListening = self.listenerCount('readable') > 0 if (state.resumeScheduled && state[kPaused] === false) { // Flowing needs to be set to true now, otherwise // the upcoming resume will not flow. state.flowing = true // Crude way to check if we should resume. } else if (self.listenerCount('data') > 0) { self.resume() } else if (!state.readableListening) { state.flowing = null } } function nReadingNextTick(self) { debug('readable nexttick read 0') self.read(0) } // pause() and resume() are remnants of the legacy readable stream API // If the user uses them, then switch into old mode. Readable.prototype.resume = function () { const state = this._readableState if (!state.flowing) { debug('resume') // We flow only if there is no one listening // for readable, but we still have to call // resume(). state.flowing = !state.readableListening resume(this, state) } state[kPaused] = false return this } function resume(stream, state) { if (!state.resumeScheduled) { state.resumeScheduled = true process.nextTick(resume_, stream, state) } } function resume_(stream, state) { debug('resume', state.reading) if (!state.reading) { stream.read(0) } state.resumeScheduled = false stream.emit('resume') flow(stream) if (state.flowing && !state.reading) stream.read(0) } Readable.prototype.pause = function () { debug('call pause flowing=%j', this._readableState.flowing) if (this._readableState.flowing !== false) { debug('pause') this._readableState.flowing = false this.emit('pause') } this._readableState[kPaused] = true return this } function flow(stream) { const state = stream._readableState debug('flow', state.flowing) while (state.flowing && stream.read() !== null); } // Wrap an old-style stream as the async data source. // This is *not* part of the readable stream interface. // It is an ugly unfortunate mess of history. Readable.prototype.wrap = function (stream) { let paused = false // TODO (ronag): Should this.destroy(err) emit // 'error' on the wrapped stream? Would require // a static factory method, e.g. Readable.wrap(stream). stream.on('data', (chunk) => { if (!this.push(chunk) && stream.pause) { paused = true stream.pause() } }) stream.on('end', () => { this.push(null) }) stream.on('error', (err) => { errorOrDestroy(this, err) }) stream.on('close', () => { this.destroy() }) stream.on('destroy', () => { this.destroy() }) this._read = () => { if (paused && stream.resume) { paused = false stream.resume() } } // Proxy all the other methods. Important when wrapping filters and duplexes. const streamKeys = ObjectKeys(stream) for (let j = 1; j < streamKeys.length; j++) { const i = streamKeys[j] if (this[i] === undefined && typeof stream[i] === 'function') { this[i] = stream[i].bind(stream) } } return this } Readable.prototype[SymbolAsyncIterator] = function () { return streamToAsyncIterator(this) } Readable.prototype.iterator = function (options) { if (options !== undefined) { validateObject(options, 'options') } return streamToAsyncIterator(this, options) } function streamToAsyncIterator(stream, options) { if (typeof stream.read !== 'function') { stream = Readable.wrap(stream, { objectMode: true }) } const iter = createAsyncIterator(stream, options) iter.stream = stream return iter } async function* createAsyncIterator(stream, options) { let callback = nop function next(resolve) { if (this === stream) { callback() callback = nop } else { callback = resolve } } stream.on('readable', next) let error const cleanup = eos( stream, { writable: false }, (err) => { error = err ? aggregateTwoErrors(error, err) : null callback() callback = nop } ) try { while (true) { const chunk = stream.destroyed ? null : stream.read() if (chunk !== null) { yield chunk } else if (error) { throw error } else if (error === null) { return } else { await new Promise(next) } } } catch (err) { error = aggregateTwoErrors(error, err) throw error } finally { if ( (error || (options === null || options === undefined ? undefined : options.destroyOnReturn) !== false) && (error === undefined || stream._readableState.autoDestroy) ) { destroyImpl.destroyer(stream, null) } else { stream.off('readable', next) cleanup() } } } // Making it explicit these properties are not enumerable // because otherwise some prototype manipulation in // userland will fail. ObjectDefineProperties(Readable.prototype, { readable: { __proto__: null, get() { const r = this._readableState // r.readable === false means that this is part of a Duplex stream // where the readable side was disabled upon construction. // Compat. The user might manually disable readable side through // deprecated setter. return !!r && r.readable !== false && !r.destroyed && !r.errorEmitted && !r.endEmitted }, set(val) { // Backwards compat. if (this._readableState) { this._readableState.readable = !!val } } }, readableDidRead: { __proto__: null, enumerable: false, get: function () { return this._readableState.dataEmitted } }, readableAborted: { __proto__: null, enumerable: false, get: function () { return !!( this._readableState.readable !== false && (this._readableState.destroyed || this._readableState.errored) && !this._readableState.endEmitted ) } }, readableHighWaterMark: { __proto__: null, enumerable: false, get: function () { return this._readableState.highWaterMark } }, readableBuffer: { __proto__: null, enumerable: false, get: function () { return this._readableState && this._readableState.buffer } }, readableFlowing: { __proto__: null, enumerable: false, get: function () { return this._readableState.flowing }, set: function (state) { if (this._readableState) { this._readableState.flowing = state } } }, readableLength: { __proto__: null, enumerable: false, get() { return this._readableState.length } }, readableObjectMode: { __proto__: null, enumerable: false, get() { return this._readableState ? this._readableState.objectMode : false } }, readableEncoding: { __proto__: null, enumerable: false, get() { return this._readableState ? this._readableState.encoding : null } }, errored: { __proto__: null, enumerable: false, get() { return this._readableState ? this._readableState.errored : null } }, closed: { __proto__: null, get() { return this._readableState ? this._readableState.closed : false } }, destroyed: { __proto__: null, enumerable: false, get() { return this._readableState ? this._readableState.destroyed : false }, set(value) { // We ignore the value if the stream // has not been initialized yet. if (!this._readableState) { return } // Backward compatibility, the user is explicitly // managing destroyed. this._readableState.destroyed = value } }, readableEnded: { __proto__: null, enumerable: false, get() { return this._readableState ? this._readableState.endEmitted : false } } }) ObjectDefineProperties(ReadableState.prototype, { // Legacy getter for `pipesCount`. pipesCount: { __proto__: null, get() { return this.pipes.length } }, // Legacy property for `paused`. paused: { __proto__: null, get() { return this[kPaused] !== false }, set(value) { this[kPaused] = !!value } } }) // Exposed for testing purposes only. Readable._fromList = fromList // Pluck off n bytes from an array of buffers. // Length is the combined lengths of all the buffers in the list. // This function is designed to be inlinable, so please take care when making // changes to the function body. function fromList(n, state) { // nothing buffered. if (state.length === 0) return null let ret if (state.objectMode) ret = state.buffer.shift() else if (!n || n >= state.length) { // Read it all, truncate the list. if (state.decoder) ret = state.buffer.join('') else if (state.buffer.length === 1) ret = state.buffer.first() else ret = state.buffer.concat(state.length) state.buffer.clear() } else { // read part of list. ret = state.buffer.consume(n, state.decoder) } return ret } function endReadable(stream) { const state = stream._readableState debug('endReadable', state.endEmitted) if (!state.endEmitted) { state.ended = true process.nextTick(endReadableNT, state, stream) } } function endReadableNT(state, stream) { debug('endReadableNT', state.endEmitted, state.length) // Check that we didn't get one last unshift. if (!state.errored && !state.closeEmitted && !state.endEmitted && state.length === 0) { state.endEmitted = true stream.emit('end') if (stream.writable && stream.allowHalfOpen === false) { process.nextTick(endWritableNT, stream) } else if (state.autoDestroy) { // In case of duplex streams we need a way to detect // if the writable side is ready for autoDestroy as well. const wState = stream._writableState const autoDestroy = !wState || (wState.autoDestroy && // We don't expect the writable to ever 'finish' // if writable is explicitly set to false. (wState.finished || wState.writable === false)) if (autoDestroy) { stream.destroy() } } } } function endWritableNT(stream) { const writable = stream.writable && !stream.writableEnded && !stream.destroyed if (writable) { stream.end() } } Readable.from = function (iterable, opts) { return from(Readable, iterable, opts) } let webStreamsAdapters // Lazy to avoid circular references function lazyWebStreams() { if (webStreamsAdapters === undefined) webStreamsAdapters = {} return webStreamsAdapters } Readable.fromWeb = function (readableStream, options) { return lazyWebStreams().newStreamReadableFromReadableStream(readableStream, options) } Readable.toWeb = function (streamReadable, options) { return lazyWebStreams().newReadableStreamFromStreamReadable(streamReadable, options) } Readable.wrap = function (src, options) { var _ref, _src$readableObjectMo return new Readable({ objectMode: (_ref = (_src$readableObjectMo = src.readableObjectMode) !== null && _src$readableObjectMo !== undefined ? _src$readableObjectMo : src.objectMode) !== null && _ref !== undefined ? _ref : true, ...options, destroy(err, callback) { destroyImpl.destroyer(src, err) callback(err) } }).wrap(src) }