mirror of
https://github.com/JasonYANG170/CodeGeeX4.git
synced 2024-11-27 06:06:33 +00:00
1.1 KiB
1.1 KiB
RAG Functionality
CodeGeeX4 supports RAG retrieval enhancement and is compatible with the LlamaIndex framework to achieving project-level retrieval Q&A.
Usage Tutorial
1. Install Dependencies
cd llamaindex_demo
pip install -r requirements.txt
Note: This project uses tree-sitter-language, which has compatibility issues with Python 3.10, so please use Python 3.8 or Python 3.9 to run this project.
2. Configure Embedding API Key
This project uses the Zhipu Open Platform's Embedding API to implement vectorization. Please register and obtain an API Key first.
Then configure the API Key in models/embedding.py
.
For details, refer to https://open.bigmodel.cn/dev/api#text_embedding
3. Generate Vector Data
python vectorize.py --workspace . --output_path vectors
>>> File vectorization completed, saved to vectors
4. Run the Q&A Script
python chat.py --vector_path vectors
>>> Running on local URL: http://127.0.0.1:8080