mirror of
https://github.com/JasonYANG170/CodeGeeX4.git
synced 2024-11-27 06:06:33 +00:00
43 lines
1.1 KiB
Markdown
43 lines
1.1 KiB
Markdown
![](../resources/logo.jpeg)
|
|
|
|
[English](README.md) | [中文](README_zh.md)
|
|
|
|
## RAG Functionality
|
|
|
|
CodeGeeX4 supports RAG retrieval enhancement and is compatible with the LlamaIndex framework to achieving project-level retrieval Q&A.
|
|
|
|
## Usage Tutorial
|
|
|
|
### 1. Install Dependencies
|
|
|
|
```bash
|
|
cd llamaindex_demo
|
|
pip install -r requirements.txt
|
|
```
|
|
|
|
Note: This project uses tree-sitter-language, which has compatibility issues with Python 3.10, so please use Python 3.8 or Python 3.9 to run
|
|
this project.
|
|
|
|
### 2. Configure Embedding API Key
|
|
|
|
This project uses the Zhipu Open Platform's Embedding API to implement vectorization. Please register and obtain an API Key first.
|
|
Then configure the API Key in `models/embedding.py`.
|
|
For details, refer to https://open.bigmodel.cn/dev/api#text_embedding
|
|
|
|
### 3. Generate Vector Data
|
|
|
|
```bash
|
|
python vectorize.py --workspace . --output_path vectors
|
|
>>> File vectorization completed, saved to vectors
|
|
```
|
|
|
|
### 4. Run the Q&A Script
|
|
|
|
```bash
|
|
python chat.py --vector_path vectors
|
|
>>> Running on local URL: http://127.0.0.1:8080
|
|
```
|
|
|
|
## Demo
|
|
|
|
![](resources/demo.png) |